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The current crisis of antimicrobial resistance in clinically relevant pathogens
has highlighted our limited understanding of the ecological and evolutionary
forces that drive drug resistance adaptation. For instance, although human tis-
sues are highly heterogeneous, most of our mechanistic understanding about
antibiotic resistance evolution is based on constant and well-mixed environ-
mental conditions. A consequence of considering spatial heterogeneity is
that, even if antibiotics are prescribed at high dosages, the penetration of
drug molecules through tissues inevitably produces antibiotic gradients,
exposing bacterial populations to a range of selective pressures and generat-
ing a dynamic fitness landscape that changes in space and time. In this
paper, we will use a combination of mathematical modelling and computer
simulations to study the population dynamics of susceptible and resistant
strains competing for resources in a network of micro-environments with
varying degrees of connectivity. Our main result is that highly connected
environments increase diffusion of drug molecules, enabling resistant
phenotypes to colonize a larger number of spatial locations. We validated
this theoretical result by culturing fluorescently labelled Escherichia coli in
3D-printed devices that allow us to control the rate of diffusion of antibiotics
between neighbouring compartments and quantify the spatio-temporal
distribution of resistant and susceptible bacterial cells.
1. Introduction
The introduction of antimicrobial substances as therapeutic agents has had a
dramatic effect in decreasing mortality and morbidity associated with infectious
diseases. However, the indiscriminate use of these substances, in conjunction
with the accelerated rate of adaptation exhibited by pathogenic bacteria, has
dramatically reduced the efficacy of antimicrobial therapies and presents us
with the possibility of a healthcare crisis of catastrophic dimensions [1]. In
this context, it is necessary to invest in the discovery of new drugs [2] and to
reduce the use of antimicrobial substances, both in the clinic [3] and elsewhere
[4], but also to increase our understanding about the complex interaction
between antibiotics, bacteria and hosts.

Of course, the ultimate goal of antimicrobial therapy is to drive a pathogenic
population to extinction, so antibiotics must be prescribed at concentrations high
enough for bacterial cells to die. Even if complete clearance of pathogens cannot
be achieved, conventionalwisdom states that high drugdosages suppress growth
of the bacterial population and adjuvate the immune system to control the infec-
tion. Another benefit of maximizing the inhibitory effect of antibiotics is that, in
principle, the mutational supply is reduced and therefore the probability that an
individual in the population acquires an antibiotic-resistance mutation is lower
[5] (although studies have shown that mutation rates can be density-dependant
[6] and increased in the presence of antimicrobial substances [7]).

But aggressive antibiotic protocols can accelerate the rate of adaptation, for
instance by suppressing susceptible competitors and releasing resources that
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promote growth of the resistant subpopulation [8]. Motivated
by the evident failure of the current hit early, hit hard prescrip-
tion strategy [9], a series of theoretical and experimental
studies have argued that antimicrobial therapies should con-
sider resistance management instead of focusing exclusively
in pathogenic clearance, for example by using shorter [10]
and less aggressive [11] treatments, multidrug combination
therapies [12,13], sequential treatments [14–16] and increasing
drug appropriateness with better point-of-care diagnostic tests
[17,18].

Another problem associated with the use of high doses of
antibiotics is that, even if a lethal drug concentration is adminis-
tered, a heterogeneous spatial structure will produce an
antibiotic gradient and thus expose the pathogenic bacteria to
a range of selective pressures in favour of resistance. Indeed, it
is well known that the therapeutic use of antibiotics sees
in vivo drug concentrations sweep from high concentrations
downwards during treatment (with a considerable time spent
at low drug concentrations), producing low-dose sanctuaries
that have been observed in bacterial [19] and viral infections
[20], promoting the evolution of antibiotic resistance [21]. For
this reason, previous studies have focused on evaluating the
effect of sublethal doses in the evolution of drug resistance
[22] and in modulating virulence factors [23], showing that
selection for resistance can occur at very low antibiotic doses
[24,25] and that antibiotic gradients can accelerate the rate of
drug-resistance adaptation [26–28]. Similarly, convection [29]
and cellmigration [13,30] can lead to increases indrug resistance
through sequential adaptive steps in space and time.

As the ecological and evolutionary dynamics of amicrobial
community depend on the genotypic and functional complex-
ityof the population and their interactionwith the environment
[31], then the chemical composition of themedia is a key driver
of microbial ecological and evolutionary dynamics. Crucially,
this is modified by the physical properties of the environment,
for instance its temperature [32] and humidity [33], but also by
structural properties like geometry [34] and porosity [35]. In
this paper, we will argue that the connectivity between differ-
ent spatial locations is directly responsible for the distribution
of antibiotics in the environment, thus producing a range of
selective pressures in favour of resistance.

In short, we will use a population dynamics model to
argue that selection for resistance is correlated with the
degree of connectivity of the environment, both in a linear
array of connected micro-environments and also in networks
with different topological properties. This prediction will be
validated empirically using an experimental model system
based on spatially explicit culture devices built using compu-
ter aided design software and 3D printing technology. These
devices allow us to control the rate of diffusion of drug
molecules between neighbouring micro-environments, while
quantifying spatio-temporal changes in the relative frequency
of fluorescently tagged resistant and susceptible Escherichia
coli strains.
2. Results
2.1. Competitive fitness in a range of drug

concentrations
In this paper, we will use two strains of E. coliMC4100 [36,37]:
WCL, a strain carrying KmR, a gene that provides resistance to
the aminoglicocide antibiotic kanamycin, and GBY, a suscep-
tible strain that lacks KmR. All experiments were conducted
using M9 minimal media supplemented with 0.4% of glucose
and 0.2% of casaminoacids. Furthermore, each bacterial strain
is tagged with a different fluorescent marker under a chromo-
somal constitutive promoter (WCL with CFP and GBY with
YFP), allowing us to use a fluorescence spectrophotometer to
quantify the intensities of both fluorescent channels and use
this information to estimate the relative abundances of each
strain in a mixed population.

Our main objective is to identify the range of drug con-
centrations where antibiotic resistance is positively selected
for. To achieve this goal, we first need to evaluate the fitness
advantage associated with carrying a drug-resistant gene, a
property that can be estimated using a pair-wise competition
experiment that directly compares the fitness of the drug-
resistant genotype with respect to the susceptible strain.
This can be achieved using a standard protocol in experimen-
tal microbiology that consists of growing both strains in
controlled environmental conditions for T units of time
(usually 24 h), and then estimating the relative abundances
of each bacterial subpopulation using a fluorescence spectro-
photometer, a flow cytometer or replica plating with selective
media. From the relative frequency of each strain at the end of
the experiment we can then define the following relative
fitness coefficient:

fr :¼ fr(A) ¼
ln (Bs(T)=Bs(0))
ln (Br(T)=Br(0))

, (2:1)

where Br(t) and Bs(t) denote the densities of resistant and
susceptible strains, respectively, and A the environmental
concentration of the antimicrobial substance (in our case,
kanamycin). For the purpose of this paper, we will consider
that Br(0) = Bs(0), an assumption that allows us to estimate
ϕr(A) based only in observations about the state of the
system at the end of the experiment.

Figure 1b shows the optical densities of both bacterial
strains after 24 h of growing in rich media (LB) in the absence
of antibiotics, both in co-culture and in isolation. Note that
growth rate of the resistant mono-culture (cyan bar) is
lower than that of the susceptible bacteria (yellow), implying
that kanamycin resistance is associated with a fitness burden
in drug-free environments [38]. As a result, the susceptible
strain has a higher competitive fitness than the resistant
subpopulation at low antibiotic concentrations, a feature
represented by the inequality ϕr < 1.

By contrast, if the concentration of antibiotic is high, then
the advantage of carrying a resistance mutation outweighs its
fitness burden and therefore ϕr(A) is a monotonically increas-
ing function of antibiotic dose (figure 1a). If we denote with
AMSC the antibiotic concentration such that ϕr(A) > 1 for all
A >AMSC, then we can identify the range of drug concen-
trations whereby resistance is positively selected for. This
critical concentration is referred to in the literature as the
minimal selection concentration [24] (MSC).

In order to study how the local strength of selection for
resistance changes in an antibiotic gradient, we use a dose–
response experiment that consists of growing cells under
increasing drug concentrations and measuring bacterial
densities or maximal growth rates in a fixed time interval.
This assay is routinely used in medical microbiology to esti-
mate drug concentrations that completely inhibit growth of
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Figure 1. Effect of antibiotic concentration in a competition experiment between resistant (WCL, CFP) and susceptible (GBY, YFP) strains. (a) Relative fitness as a
function of kanamycin concentration, in co-culture. (b) Optical density of each strain, on isolation and co-culture. Note how the growth rate of the susceptible strain
is larger compared to the resistant subpopulation, resulting in a larger fraction of the population after 24 h. (c) Normalized fluorescence intensity measured under a
range of drug concentrations. Note how the intensity of the yellow channel drops dramatically at sub-inhibitory concentrations, resulting in an increase in the
frequency of the resistant subpopulation. (d ) Experimental growth curves for different drug concentrations (in grey each of six replicates, with their mean plotted
in solid black). The population structure of the mixed population was estimated from measurements at different wavelengths (turbidity: 630 nm, cyan: 434 nm/479 nm,
yellow: 497 nm/535 nm). As the antibiotic concentration increases, the overall density remains constant (e), but the relative fraction of resistance in the population
increases (c). (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190363

3

a specific clinical isolate and, for this reason, dose–response
experiments are usually performed with mono-cultures. In
our experiments, we inoculate the dose–response experiment
with both strains, with the aim of computing ϕr(Ai) for a
range of drug concentrations A1 <A2 <… <Ai <… <An.

Another critical antibiotic concentration is known as the
minimum inhibitory concentration (MIC), defined as the drug
concentration such that bacterial growth is completely sup-
pressed. In general, the shape of dose–response curves can
be approximated with a logistic equation. Indeed, figure 1c,d
shows that total bacterial density remains constant at
sub-MIC concentrations, but relative abundances of each sub-
population change as a function of dose, with Br increasing in
frequency as the concentration of drug increases. The region
in drug-space where bacterial growth is still observed and
drug resistance is under positive selection (i.e. ϕr(A) > 1) is
known as the mutant selection window (MSW) [39].

An interesting observation obtained by comparing
figure 1c,d, is that the MIC of the co-culture corresponds to
the MIC of the resistant subpopulation, while the susceptible
strain has, by definition, a lower MIC. Interestingly, in our
experiments, bacterial density seems to be maximized at inter-
mediate drug concentrations, a feature that has been reported
previously [40] and can have many causes, including Br

growing without competition at intermediate drug concen-
trations [41]. Indeed, figure 1c,d shows that there is a range
of concentrations where Bs has already gone extinct, but the
concentration is not high enough to suppress growth of
the resistant subpopulation. Note that, in clinical settings,
this is the region of drug-space that we would like to avoid
to prevent the evolution of drug resistance.
2.2. Modelling drug-resistance population dynamics
Previous studies have used a top-down approach and postulated
pharmacodynamic models derived from fitting dose–response
curves with Hill functions [42,43]. Instead, here we will use a
bottom-up approach that explicitly considers the concentrations
of limiting resource and antibiotics present in the environment,
with the aim of evaluating the population dynamics between
susceptible and resistant bacterial types that emerges in
response to different environmental conditions. In the follow-
ing section, we will discuss how to include the spatial
component into the model, but first let us assume that the
environment is well mixed and, therefore, the interaction
between bacterial cells and abiotic molecules follows a mass
action kinetics so we can model temporal changes in bacterial
abundances using a system of ordinary differential equations.

Although clearly a possibility, for the purpose of this
paper, we will not consider that susceptible cells can acquire
drug resistance through stochastic mutations or horizontal
gene transfer. The reason for this assumption is that we are
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mainly interested in studying the ecological dynamics of the
system after a resistant mutant appears in the population.
Therefore, both in our numerical simulations and in the
experiments discussed later in this paper, we will consider
that both strains are a priori present in the system the
moment the antibiotic is deployed and quantify the strength
of selection for resistance, ϕr(A), in response to a range of
antibiotic concentrations.

First, let us represent the concentration of a limiting
resource present in the environment with the variable R(t).
Then uptake of resources into each cell can be modelled
with a nonlinear saturating resource uptake function that
depends on R(t):

U�(R(t)) ¼ m�
maxR(t)

K�
m þ R(t)

, (2:2)

where m�
max and K�

m denote the maximum uptake rate and the
half-saturation constants, respectively, of bacterial type B�.

Now let us suppose that, at time t, the environment
contains an antibiotic at a concentration that we will denote
A(t). In particular, we will consider an antibiotic with a bac-
teriostatic mode of action, namely that it inhibits bacterial
growth by interfering with protein translation, DNA replica-
tion, or other aspects of bacterial cellular metabolism. As
mentioned before, in the experiments presented in this
paper we are using kanamycin, an aminoglycocide that
binds to the 30S subunit of the ribosome, thereby suppressing
bacterial protein synthesis and inhibiting growth. Therefore,
we will model growth inhibition with a monotonically
decreasing function, such that γ(A(t))≥ 0 for all A, and with
γ(0) = 1 in the absence of antibiotic, for instance,

g(A) ¼ 1� k1A
1þ k2A

,

where parameters k1 represent the cell’s affinity for the
antibiotic and k2 the maximal growth inhibition by the bacter-
iostatic drug. Note that by considering that bacteriostatic
antibiotics inhibit growth rate through competitive inhibition
of a cellular target, it is possible to derive γ(A) using enzy-
matic mechanics [44]. Now, αs and αr are parameters that
represent the inactivation of drug molecules for each bacterial
strain as a result of their binding with the cellular targets.

Then bacterial growth rate of bacterial type B� can be
modelled as the resource uptake function multiplied by the
inhibition coefficient, G�(R, A) ¼ r� � g�(A) �U�(R), where r�
denotes a resource conversion coefficient that represents the
efficiency of each subpopulation in converting resource
molecules into biomass.

So, if x(t) = (R(t), A(t), Bs(t), Br(t)) represents the state of
the system, the system of equations that describe its temporal
dynamics can be written as

dR
dt

¼ �Us(R)Bs �Ur(R)Br, (2:3a)

dA
dt

¼ �A(asBs þ arBr), (2:3b)

dBs

dt
¼ Gs(R, A)Bs (2:3c)

and
dBr

dt
¼ Gr(R, A)Br (2:3d)

with initial conditions x(0) ¼ (R0, A0, B0
s , B

0
r ).

Figure 2 shows numerical simulations of this model with
different initial drug concentrations and parameter values
described in table 1 (solved using standard ODE solvers in
Matlab). Note how at low antibiotic concentrations, Bs has a
higher growth rate than Br and therefore the yellow area is
larger than the blue area. These numerically obtained
growth curves illustrated in figure 2 compare qualitatively
well with the experimental data shown in figure 1d; as the
concentration of antibiotic increases, so does the competitive
fitness of the resistant strain until eventually the susceptible
strain is no longer able to grow and the population is entirely
composed of resistant cells (blue area). At very high drug
concentrations, neither of the strains can grow and the
bacterial population is completely suppressed.
2.3. Modelling diffusion of antibiotics in connected
micro-environments

The model presented in the previous section assumes a
uniform distribution of cells and abiotic molecules in the
environment. This is, of course, a simplification, as natural
environments like the human body are not homogeneous,
but instead can be approximated with a series of discretely
distributed compartments [45].

It is known that complex population dynamics can
emerge from the mosaic of selective pressures imposed by a
spatially structured environment, with separate locations
selecting for specific gene variants [46]. Previous studies
have also shown that drugs have characteristic penetration
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profiles through the tissue, thus creating antibiotic gradients
and exposing bacterial populations to a range of antibiotic
concentrations [21] and, as a result, producing dynamic
drug resistance fitness landscapes [42,47].

For the purpose of this paper, we will consider that the
environment consists of a network of connected micro-
environments, each occupied by a polimicrobial community
composed of susceptible and resistant strains.Wewill consider
that abiotic substances (e.g. antibiotics and glucose) can dif-
fuse between adjacent micro-environments, but that cells are
incapable of moving between neighbouring compartments.
This assumption allows us to argue that, even without consid-
ering cell migration, selection for resistance is enhanced in
environments with a high degree of connectivity.

In the following sections, we will describe an experimen-
tal device that allows diffusion of drugs, but not of aerobic
bacterial cells. But, first, let us define E as the spatial location
where a group of cells interact with the extracellular environ-
ment. We will refer to this quasi-homogeneous region as a
micro-environment or a compartment. Then we can model
the population dynamics that occurs in each compartment
using equations (2.3a–d), but with drug molecules diffusing
between adjacent micro-environments. Therefore, if δA rep-
resents the antibiotic diffusion rate and σi,j the degree of
connectivity between compartments Ei and Ej, then the
concentration of antibiotic in Ei can be denoted by Ai and
modelled by the following differential equation:

dAi

dt
¼ �Ai(asGs(Ri)þ arGr(Ri))þ

XN

n¼1

si,n(An � Ai)dA, (2:4)

where N represents the total number of micro-environments
in the system (σi,j = 0 when Ei and Ej are not connected).
Similarly, we will also consider that resources can diffuse
between micro-environments at a rate δR. Therefore, the
differential equation that describes the rate of change of
resource concentration in Ei is

dRi

dt
¼ �Us(Ri)Bi

s �Ur(Ri)Bi
r þ

XN

n¼1

si,n(Rn � Ri)dR: (2:5)

We would expect that, if a lethal concentration of anti-
biotic is deployed in a node of the network, the antibiotic
concentration in a different location (and thus the strength
of selection in favour of the resistant subpopulation in that
micro-environment), will depend on the drug concentration
used, but also on the distance to the antibiotic source.
2.4. Dynamics of drug resistance in antibiotic gradients
In order to evaluate how the degree of connectivity of the
network correlates with the overall strength of selection for
resistance, first, we will consider that the environment is
composed of a linear array of connected micro-environ-
ments. We will then solve numerically equations (2.3a–d)
to evaluate the population dynamics that emerges in each
micro-environment in response to an antibiotic gradient.
For simplicity, we will consider that all consecutive micro-
environments are at the same distance of each other, that
is σi,i+1 ≡ σ. By contrast, σi,j≡ 0 if compartments Ei and Ej

are not consecutive.
As we are using a lethal antibiotic concentration, in

the vicinity of the location where the drug was applied,
bacterial growth was completely inhibited. By contrast,
micro-environments far away from the drug source present
very lowantibiotic concentrations and thus susceptible bacteria
grow until carrying capacity. These low-dose compartments
are referred to in previous studies as drug sanctuaries [21].
At intermediate drug concentrations, however, the resistant
subpopulation has a fitness advantage over the susceptible
strain, ϕr > 1.

Note that although the total concentration of antibiotic
used is the same in all our numerical experiments, the
number of micro-environments where ϕr > 1, that is the MSW,
is higher in environments with high degree of connectivity.
This is illustrated in figure 3a, where it shows that if we increase
σ, the number of compartments where ϕr > 1 (blue circles)
increases. Indeed, figure 3b shows that the number of micro-
environments where the resistant strain outcompetes the
susceptible subpopulation appears to be positively correlated
with the degree of connectivity of the environment. Also, as
a result of more antibiotic diffusing out of the source into
the neighbouring compartments, the total bacterial density
observed in all compartments decreases as we increase σ.
This, in turn, is correlated with an increase in the total
frequency of resistance in the population, as illustrated in
figure 3c.

The numerical experiments presented thus far are
performed for a fixed time interval of T = 24 units of time.
Interestingly, the strength of selection under different diffusion
regimes also depends on the duration of the observation. For
instance, if T = 0 both strains have the same density (by exper-
imental design) and therefore ϕr = 1 in every compartment,
independently of the degree of connectivity. As T increases,
however, more antibiotic is allowed to diffuse out of the
drug source and therefore selection for resistance is enhanced.
Figure 3d shows how the region where ϕr > 1 increases as
larger values of T are considered.

To investigate whether the enhanced diffusion of anti-
biotics produces increased selection for resistance, we will
probe in vitro how antibiotic gradients modulate the fitness
landscape of a population of resistant and susceptible bacteria.
In particular, first we will consider a linear array of connected
micro-environments with a lethal dose of antibiotic deployed
in a single node. As expected, the antibiotic diffuses to the
adjacent compartments, thus producing a drug gradient.
Note that we can modify the gradient formed by increasing
the connectivity between adjacent nodes.

It was recently shown that 3D printing can be performed
in sterile conditions [48], so we designed a protocol that
implements gradient devices printed in polylactic acid
(PLA). In particular, we printed a linear array of micro-
environments connected through channels that restrain
movement of bacterial cells, but allow diffusion of antibiotic
molecules between connected compartments (see figure 4a
for an illustration of these devices).

First, we validated our theoretical assumption that cells
were not able to move between compartments by inoculating
a single compartment by printing a series of devices composed
of wells connected through channels of different widths (1, 3
and 5mm) and filling each well with 200 μl of soft M9 agar.
We concluded there was no movement of cells after observing
no bacterial growth in the neighbouring compartments when
incubating at 30°C for 48 h. This was expected, as oxygen gra-
dients are formed in the agar and therefore aerobic bacterial
cells (for instance, the E. coli strain used in this study) live
in the agar surface and cannot penetrate deep enough
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to reach the tunnel that connects with the neighbouring
micro-environment.

Now that we have established that cells are unable to
move between micro-environments, we now need to show
that chemical substances can diffuse out of a drug source
through the agar tunnels that connect neighbouring compart-
ments. To achieve this goal, we applied a fluorescent dye to
the first well of a different device and, using a bespoke fluor-
escence imaging system (see Material and methods for CAD
files and instructions on how to build one), estimated the flu-
orescence intensity emitted by the fluorescent dye in each
compartment at different moments in time. As illustrated in
figure 4b, each well is relatively homogeneous, but drugs
diffuse through the tunnels and a gradient is formed.

After using fluorescent dye and image analysis tools to
validate that our 3D-printed devices produced different
gradients depending on the width of the channels, we then
proceeded to produce antibiotic gradients. These experiments
consist of filling the first well of each device with soft M9 agar
and 50 μg ml−1 of kanamycin. Then we allow the plate to dry
and fill the rest of the wells with 200 μl of soft M9 agar (with-
out antibiotic). Finally, we placed the device at 4°C for 48 h
for the gradients to form.

The competition assay consisted of inoculating each well in
the device with 10 μl of bacterial culture (on a mixture of 1:1
ratio of susceptible and resistant bacteria) and placing the
device inside a petri dish, sealing it with parafilm and incubat-
ing it at 30°C for 24 h. To achieve equal fraction of both strains,
we grew them both in isolation overnight until reaching a high
optical density at 600 nm (1.4 OD600–1.6 OD600). Then we
poured M9 media without nutrients in the culture with the
highest opticaldensity todilute it until both strainsare at exactly
the same density. The mixed culture used to inoculate the
device is obtained by combining 10ml samples of each strain.

In order to characterize and calibrate the profile of fluor-
escence generated by each genotype, first we inoculated each
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strain in isolation and measured the fluorescence intensity
observed using different optical configurations. As shown
in figure 4c, GBY can be detected using YFP filters and WCL

with CFP filters. When cells are in co-culture, we detected
fluorescence in both channels and use themaximum andmini-
mum fluorescence observed by each strain grown in isolation
to normalize the fluorescence of the mixed population (see
Material and methods for experimental details). We also used
a susceptibleE. coliMG1655 strain as a non-fluorescent control.
We, therefore, argue that relative fluorescence is a proxy for the
relative abundances of each strain in the population.

Figure 4d shows a photograph taken after 24 h using both
CFP and YFP fluorescent channels; yellow compartments
correspond to micro-environments where the susceptible
subpopulation outcompeted resistant cells, and blue compart-
ments where only resistant cells where observed. Using
imageanalysis algorithmsweobtained the relative fluorescence
intensityof both channels (illustrated in figure 4f) and observed
that, as predicted in the theoretical results shown in figure 3a,
the width of the channel is correlated with the number of
micro-environments where resistant cells have a higher fitness
and outcompete the susceptible subpopulation.
We recovered the bacteria from each well and centrifuged
each sample into 1ml of liquid M9 without nutrients and
used a flow cytometer to validate the fraction of cells in
each subpopulation estimated using image analysis. Indeed,
figure 4e shows that in the low-connectivity regimes, the
resistant subpopulation outcompetes susceptible bacteria in
micro-environments near the drug source. By contrast,
when the connectivity is high, susceptible bacteria can grow
in a reduced number of compartments.

All together, we conclude that high connectivity between
compartments in a linear array of micro-environments
enhances diffusion of drug molecules, increasing the strength
of selection in favour of drug resistance. In the following
section, we will extend this model to consider complex
networks of connected micro-environments.

2.5. Population dynamics in complex networks of
connected micro-environments

To explore the generality of the result presented previously,
we now remove the constraint that micro-environments can
only be connected linearly with a maximum of two
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neighbouring compartments. As before, cell movement is not
allowed but antibiotic molecules can diffuse between neigh-
bouring compartments. Previous studies have proposed
using metapopulation models to study the effect of different
network structures in the evolutionary dynamics [49,50].
Here, we use the population dynamics model presented
in equations (2.3a–d) to evaluate the effect of networks
with different degrees of connectivity in the drug-resistance
fitness landscape. Our goal is to count the nodes in the
network where drug resistance is positively selected for,
that is the fraction of the population locally exposed to
drug concentrations within the MSW.

First, we probed small networks with simple architectures
and varying degrees of connectivity: a lattice, a star, a wheel
and a complete network [51]. We then introduced antibiotic
in a random node of the network at t = 0 and numerically
solved the bacterial population dynamics model T units of
time, in order to estimate the total population density and
the frequency of resistance of each node at t = T. It is impor-
tant to notice that, while in the previous section we used
the width of the channel to quantify the connectivity between
two neighbouring nodes, we will now assume channel
width between connected nodes is constant and focus on a
topological definition of connectivity. For instance, we
could define network density based on the expression 2m/
n(n− 1), where n and m represent the number of nodes and
edges of the network, respectively. Other measures that
quantify the modularity of the network, for instance the
network’s clustering coefficient [52], produce qualitatively
the same results.
Figure 5a shows numerical results obtained after simulat-
ing 8000 random networks under a range of antibiotic
concentrations and parameter values described in table 1.
Each bar corresponds to the fraction of nodes in the network
colonized by each strain (cyan and yellow for resistant and
susceptible strains, respectively, and grey bars represent
micro-environments where neither of the strains was able
to grow). In all cases, at low antibiotic concentrations, the
susceptible strain colonized every micro-environment in
the network.

Our results suggest that networks with high degree of
connectivity (e.g. a complete graph) allow for a uniform dis-
tribution of antibiotics throughout every node in the graph,
therefore effectively clearing both populations. By contrast,
in networks with intermediate connectivity (e.g. wheel and
star), a gradient of antibiotics is produced and some micro-
environments present drug concentrations within the MSW,
even if the antibiotic is deployed at concentrations higher
than the mutant prevention concentration. Interestingly, in
networks with low connectivity (e.g. cycles), we observed
drug sanctuaries where the antibiotic was present at very
low concentrations, resulting in micro-environments colo-
nized by susceptible bacteria. This is remarkable, given that
the antibiotic was deployed at a very high dose.

Finally, in order to evaluate the evolutionary consequences
of network topology on a large scale [53], we tested the popu-
lation dynamics that emerges in random networks with
different degrees of connectivity [54]. In particular, scale-free
networks can be constructed algorithmically from the
number of nodes n, the mean degree k (an even integer) and
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a parameter β satisfying 0≤ β ≤ 1. We can then computation-
ally obtain thousands of random undirected graph using the
following recursive algorithm: first define a regular ring lattice
with n nodes, each connected to k neighbours (k/2 on each
side, with edges uniformly distributed among the nodes).
Then, for node ni, the edge (ni, nj) with i < j is randomly
rewired with probability β to any other node to which ni is
not connected. After producing each network, we estimated
its density and simulated the population dynamics that
emerges in response to a random node of the network
receiving a lethal dose of antibiotics.

In figure 5b,c, we show results obtained after simulating
10 000 random networks of 100 nodes using different anti-
biotic concentrations. As expected, diffusion of antibiotics
was increased in networks with higher density, resulting in
a larger number of nodes with drug concentration above
the mutant selection concentration. Consequently, we found
that total bacterial density decreased as a function of both
network density and antibiotic concentration (figure 5b). As
previously argued, this decrease in density is correlated,
however, with an increased fraction of resistance in the
population (figure 5c).
63
3. Discussion
Wepresented a spatially explicit population dynamicsmodel to
argue that diffusion of antibiotics in a heterogeneous environ-
ment maximally suppresses growth of a bacterial population.
Crucially, we also found that spatial regimes with enhanced
diffusion also strengthen selection for antibiotic resistance
and, as a result, increase the number of spatial locations with
drug concentrations inside the MSW. This prediction was
corroborated by growing a co-culture of fluorescently tagged
susceptible and resistant strains in a 3D-printed gradient
device and observing that the number of environments colo-
nized by the resistant subpopulation increased as a function
of the connectivity between compartments.

Previous studies have established that spatial structure can
drive bacterial communication [55] and modulate diversity
patterns in the population [56] and, in this context, it is not
surprising that spatially explicit environments can produce a
heterogeneous spatio-temporal distribution of genotypes
[57] and drive evolutionary dynamics [53]. A common
assumption of previous population dynamics models is that
environments are heterogeneous but remain constant
through time. By contrast, cells are allowed to move between
compartments, therefore allowing one to study the effect of
migration [58–60] in the evolutionary dynamics. Instead, in
our devices, we physically restrain cells frommoving between
compartments, but allow diffusion of antibiotic molecules
through agar tunnels. This approach allows us to study the
population dynamics that emerges from a time- and pos-
ition-dependent fitness landscape produced by the antibiotic
gradient formed in the environment.

Cell migration has also been reported to be a key driver of
microbial evolutionary dynamics [13,61], for instance by
allowing resistant cells tomigrate upwards in an antibiotic gra-
dient towards resource-rich regions where susceptible cells
cannot survive [26]. It is important to highlight that we purpo-
sefully designed our culturing devices to allow diffusion of
antibiotics through agar tunnels while blocking bacteria from
moving between compartments. This compartmentalization
of the environment is a coarse representation of the spatial
structure found at multiple scales, from diverse tissue types
in a single patient, tomultiple patients in a hospital, to commu-
nities with different health trends. Moreover, considering the
environment as a series of locally homogeneous micro-
environments is consistent with our modelling assumptions,
allowing us to use computer simulations to evaluate how, in
the absence of migration, fitness landscapes change in time
and space.

In this study, we are assuming that the interaction
between bacteria and environment is not mediated by other
abiotic molecules, although previous theoretical and exper-
imental studies have suggested that resource [62] and
oxygen [63] gradients can also have a central role in driving
diversity patterns and shaping the spatial organization of
microbial groups and their susceptibility to antimicrobial
substances [64]. Another simplification of our study is that
we artificially produced drug gradients by deploying anti-
biotics in a single location of the environment. Then, by
modifying the width of the channel that joins neighbouring
compartments, we controlled the diffusion of antibiotic
molecules between micro-environments.

The antibiotic gradient produced with our 3D-printed
devices is surely a simplification of the complex spatio-
temporal profile of drug concentrations observed in vivo
during antibiotic treatment. But we argue that the formation
of antibiotic gradients is ubiquitous and that a uniform spatial
distribution of drugs is impossible to achieve in practice.
Actually, even if the initial distribution of antibiotics is
homogeneous, antibiotic gradients can be self-generated from
the interaction between the microbial population and the
extracellular environment, for instance by the release of drug-
degrading enzymes [65] or the absorption of antimicrobial
molecules [66].

A consequence of presenting a non-uniform spatial
distribution of genotypes is that bacterial communities can
implement collective strategies [67] that would be evolutiona-
rily unstable in well-mixed environments, notably metabolic
cross-feeding [68], production of signalling molecules [69]
and of extracellular matrix [70] that enable the formation of
biofilms [71] and the implementation of population-based
resistance mechanisms [69,72]. Thereforewe argue that spatial
structure, being an inherent and unavoidable property of the
environment, is not only key to understand the evolutionary
forces driving drug resistance adaptation, but also potentially
useful to decrease pathogenic virulence by disrupting
quorum-sensing signalling [55,73] or in the design of spatially
targeted treatments that select against resistant genotypes [61].
4. Material and methods
4.1. Bacterial strains and culture conditions
For the competition assay between the resistant and susceptible
bacteria to the antibiotic kanamycin, we used two Escherichia
coli strains MC4100 [36,37] labelled with either YFP (GBY) for
the susceptible strain or CFP (WCL) for the resistant strain
under a constitutive PLac promoter. We also use MG1655 as a
non-resistant, non-fluorescent control strain. All experiments
were conducted using M9 minimal media supplemented with
0.4% of glucose and 0.2% of casaminoacids. Overnight cultures
of WCL and GBY strains were grown separately in M9 minimal
media, as described above, at 30°C in continuous shaking.



Table 1. Parameters used in the numerical solutions of the population
dynamics model.

parameter value description

δA 0.2 antibiotic diffusion rate

δR 0.2 resource diffusion rate

r� (1.4 × 108,

1.05 × 108)

resource conversion coefficient

(Bs, Br)

m� (7.3 × 10−10,

8 × 10−10)

maximum uptake rate (Bs, Br)

K� (1, 1) half-saturation constant (Bs, Br)

κ1,* (0.16, 0.055) affinity for antibiotic (Bs, Br)

κ2,* (0.04, 0.06) maximal growth inhibition (Bs, Br)

a� (10 × 10−10,

10 × 10−9)

antibiotic degradation rate (Bs, Br)
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After 20 h of growth, we measure optical density with a spectro-
photometer and dilute the sample with the highest OD to
equalize the optical density for both cultures. Then we make a
mixture at 1:1 ratio, 10 μl of this co-culture is inoculated into
each well of a 96-well plate with a range of kanamycin dilutions
in M9 minimal media at fixed doses, and incubated again at 30°C
for 20 h. For the linear array assay, we filled each well with 200 μl
of soft M9 with nutrients as described above; for the first well we
add kanamycin to the media (50 μl ml−1) and let them dry and
diffused at 4°C for 48 h. Then 10 μl of bacterial culture (in a mix-
ture at 1:1 ratio) was added to each well. The device was placed
inside a petri dish, sealed with parafilm and incubated at 30°C
for 24 h.

4.2. Fabrication of 3D-printed culture devices
We used OpenScad to design culture devices composed of a
linear array of micro-environments with different degrees of
connectivity. Devices were fabricated using a commercial 3D
printer (Robo3D R2) with PLA. Each micro-environment and
the channels that connect them were filled with semi-solid
media (M9 + agar) allowing nutrients and antibiotic to move
between neighbouring micro-environment by simple diffusion.
Bacterial movement between micro-environments is prevented
by independently inoculating the surface on each well with a
1:1 proportion of resistant and susceptible bacteria. CAD files
for 3D printing can be downloaded from NIH 3D Print
Exchange: https://3dprint.nih.gov/discover/3dpx-011236.

4.3. Flow cytometry
To estimate relative abundances of each strain using flow
cytometry, first we collected the bacterial population of each
well by scraping all the surface and vortexing it in minimal
media without nutrients to remove the agar. We measured
10 000 events per sample using CFP (7/405-175mW) and YFP
(2/488-150mW) fluorescent channels of an Image Streamx
Amnis flow cytometer. Analysis was performed using Image
Stream Data Analysis and Exploration Software (IDEAS).

4.4. Image acquisition and analysis
We used an image acquisition system engineered using low-cost,
open-source software and hardware (based on Arduino micro-
controllers, http://www.arduino.cc/) and simple electronics
components. This device controls a standard CCD camera
(Canon EOS Rebel T6i with a 100mm macro lens) and produces
time-lapse movies from multi-channel images (each frame is an
array of images acquired using different fluorescent channels,
exposure times, etc.). Fluorescence is quantified using high-
intensity light-emitting diodes (Luxeon Star, http://www.lux-
eonstar.com/) and fluorescence imaging filters acquired from
Thorlabs (cyan: excitation 434 nm and emission 479 nm; and
yellow: excitation 497 nm and emission 535 nm). Image analysis
was performed using ImageJ (https://imagej.nih.gov/ij/).
Design files and instructions to build the biological apparatus
for fluorescence estimation used in this study can be downloaded
from https://github.com/ccg-esb-lab/baffle.
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